Source code for ktch.plot._pca

"""Plot functions for PCA results."""

# Copyright 2025 Koji Noshita
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns


[docs] def plot_explained_variance_ratio(pca, n_components=None, ax=None, verbose=False): """Plot explained variance ratio of PCA components. Parameters ---------- pca : sklearn.decomposition.PCA Fitted PCA object. n_components : int, optional Number of principal components to plot. If None, plot all components. ax : matplotlib.axes.Axes, optional Axes object to plot on. If None, a new figure and axes are created. verbose : bool, optional If True, print explained variance ratios and their cumulative sums. Returns ------- ax : matplotlib.axes.Axes Axes object with the plot. """ if ax is None: fig, ax = plt.subplots(figsize=(6, 4)) if n_components is None: n_components = pca.n_components_ pc_evr = pca.explained_variance_ratio_[0:n_components] pc_cum = np.cumsum(pc_evr) if verbose: print("Explained variance ratio:") print(["PC" + str(i + 1) + " " + str(val) for i, val in enumerate(pc_evr)]) print("Cumsum of Explained variance ratio:") print(["PC" + str(i + 1) + " " + str(val) for i, val in enumerate(pc_cum)]) sns.barplot( x=["PC" + str(i + 1) for i in range(n_components)], y=pc_evr, color="gray", ax=ax, ) sns.lineplot( x=["PC" + str(i + 1) for i in range(n_components)], y=pc_cum, color="gray", ax=ax, ) sns.scatterplot( x=["PC" + str(i + 1) for i in range(n_components)], y=pc_cum, color="gray", ax=ax, ) return ax
def plot_shapes_along_pcs( descriptor_inverse_transform, pca, n_dim=2, n_PCs=(0, 1, 2), sd_values=(-2, -1, 0, 1, 2), morph_color="gray", morph_alpha=1.0, fig=None, dpi=150, figscale=3.0, ): """Plot reconstructed shapes along principal components. This function is a placeholder for the actual implementation. """ pass