(getting-sterated)=
# Getting Started
ktch allows you to conduct model-based morphometrics via scikit-learn compatible API efficiently.
## Install
### From PyPI or conda-forge
ktch is currently available on `PyPI `_ and `conda-forge `_.
You can install it with pip::
$ pip install ktch
or with conda::
$ conda install -c conda-forge ktch
## Quick start
This example loads the mosquito wing outline dataset (Rohlf and Archie 1984), and calculates elliptic Fourier descriptors (EFDs).
Finally, it performs principal component analysis (PCA) on the EFDs.
```python
from sklearn.decomposition import PCA
from ktch.datasets import load_outline_mosquito_wings
from ktch.outline import EllipticFourierAnalysis
# load data
data_outline_mosquito_wings = load_outline_mosquito_wings()
X = data_outline_mosquito_wings.coords.to_numpy().reshape(-1,100,2)
# EFD
efa = EllipticFourierAnalysis(n_components=20)
coef = efa.transform(X)
# PCA
pca = PCA(n_components=3)
pcscores = pca.fit_transform(coef)
```