ktch.outline
.EllipticFourierAnalysis#
- class ktch.outline.EllipticFourierAnalysis(n_harmonics=20, n_dim=2, reflect=False, metric='', impute=False)[source]#
Elliptic Fourier Analysis (EFA)
- Parameters:
- n_harmonics: int, default=20
harmonics
- n_dim: int, default=2
dimension
- reflect: bool, default=False
reflect
- metric: str
metric
- impute: bool, False
impute
Notes
EFA is widely applied for outline shape analysis in two-dimensional space [Kuhl_Giardina_1982].
\[\begin{split}\begin{align} x(l) &= \frac{a_0}{2} + \sum_{i=1}^{n} \left[ a_i \cos\left(\frac{2\pi i t}{T}\right) + b_i \sin\left(\frac{2\pi i t}{T}\right) \right]\\ y(l) &= \frac{c_0}{2} + \sum_{i=1}^{n} \left[ c_i \cos\left(\frac{2\pi i t}{T}\right) + d_i \sin\left(\frac{2\pi i t}{T}\right) \right]\\ \end{align}\end{split}\]EFA is also applied for a closed curve in the three-dimensional space (e.g., [Lestrel_1997], [Lestrel_et_al_1997], and [Godefroy_et_al_2012]).
References
[Kuhl_Giardina_1982]Kuhl, F.P., Giardina, C.R. (1982) Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 18: 236–258. https://doi.org/10.1016/0146-664X(82)90034-X
[Lestrel_1997]Lestrel, P.E., 1997. Introduction and overview of Fourier descriptors, in: Fourier Descriptors and Their Applications in Biology. Cambridge University Press, pp. 22–44. https://doi.org/10.1017/cbo9780511529870.003
[Lestrel_et_al_1997]Lestrel, P.E., Read, D.W., Wolfe, C., 1997. Size and shape of the rabbit orbit: 3-D Fourier descriptors, in: Lestrel, P.E. (Ed.), Fourier Descriptors and Their Applications in Biology. Cambridge University Press, pp. 359–378. https://doi.org/10.1017/cbo9780511529870.017
[Godefroy_et_al_2012]Godefroy, J.E., Bornert, F., Gros, C.I., Constantinesco, A., 2012. Elliptical Fourier descriptors for contours in three dimensions: A new tool for morphometrical analysis in biology. C. R. Biol. 335, 205–213. https://doi.org/10.1016/j.crvi.2011.12.004
Methods
fit_transform
(X[, t, norm])Fit to data, then transform it.
get_feature_names_out
([input_features])Get output feature names.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
inverse_transform
(X_transformed[, t_num, ...])Inverse analysis of elliptic Fourier analysis.
set_inverse_transform_request
(*[, ...])Request metadata passed to the
inverse_transform
method.set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, norm, t])Request metadata passed to the
transform
method.transform
(X[, t, norm])EFA.
- fit_transform(X, t=None, norm=True)[source]#
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_feature_names_out(input_features: None | npt.ArrayLike = None) np.ndarray [source]#
Get output feature names.
- Parameters:
- input_featuresNone | npt.ArrayLike, optional
Input feature names, by default None
- Returns:
- feature_names_outndarray of str objects
Transformed feature names.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- inverse_transform(X_transformed, t_num=100, as_frame=False)[source]#
Inverse analysis of elliptic Fourier analysis.
- Parameters:
- X_transformedarray-like of shape (n_samples, n_features)
Elliptic Fourier coefficients.
- t_numint, default = 100
Number of coordinate values.
- as_framebool, default = False
If True, return pd.DataFrame.
- Returns:
- X_coordsarray-like of shape (n_samples, t_num, 2) or pd.DataFrame
Coordinate values reconstructed from the elliptic Fourier coefficients.
- set_inverse_transform_request(*, X_transformed: bool | None | str = '$UNCHANGED$', as_frame: bool | None | str = '$UNCHANGED$', t_num: bool | None | str = '$UNCHANGED$') EllipticFourierAnalysis #
Request metadata passed to the
inverse_transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toinverse_transform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toinverse_transform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- X_transformedstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
X_transformed
parameter ininverse_transform
.- as_framestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
as_frame
parameter ininverse_transform
.- t_numstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
t_num
parameter ininverse_transform
.
- Returns:
- selfobject
The updated object.
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_transform_request(*, norm: bool | None | str = '$UNCHANGED$', t: bool | None | str = '$UNCHANGED$') EllipticFourierAnalysis #
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- normstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
norm
parameter intransform
.- tstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
t
parameter intransform
.
- Returns:
- selfobject
The updated object.
- transform(X: list(npt.ArrayLike) | npt.ArrayLike, t: npt.ArrayLike = None, norm: bool = True) npt.ArrayLike [source]#
EFA.
- Parameters:
- X: {list of array-like, array-like} of shape (n_samples, n_coords, dim)
Coordinate values of n_samples. The i-th array-like of shape (n_coords_i, 2) represents 2D coordinate values of the i-th sample.
- t: array-like of shape (n_samples, n_coords), optional
Parameters indicating the position on the outline of n_samples. The i-th ndarray of shape (n_coords_i, ) corresponds to each coordinate value in the i-th element of X. If t=None, then t is calculated based on the coordinate values with the linear interpolation.
- norm: bool, default=True
Normalize the elliptic Fourier coefficients by the major axis of the 1st ellipse.
- Returns:
- X_transformed: array-like of shape (n_samples, (1+2*n_harmonics)*n_dim)
Returns the array-like of coefficients. (a_0, a_1, …, a_n, b_0, b_1, …, b_n, , c_0, c_1, …, c_n, d_0, d_1, …, d_n)