(getting-sterated)= # Getting Started ktch allows you to conduct model-based morphometrics via scikit-learn compatible API efficiently. ## Install ### From PyPI or conda-forge ktch is currently available on [PyPI](https://pypi.org/project/ktch/) and [conda-forge](https://anaconda.org/conda-forge/ktch). You can install it with pip:: pip install ktch or with conda:: conda install -c conda-forge ktch ## Quick start This example loads the mosquito wing outline dataset (Rohlf and Archie 1984), and calculates elliptic Fourier descriptors (EFDs). Finally, it performs principal component analysis (PCA) on the EFDs. ```python from sklearn.decomposition import PCA from ktch.datasets import load_outline_mosquito_wings from ktch.harmonic import EllipticFourierAnalysis # load data data_outline_mosquito_wings = load_outline_mosquito_wings() X = data_outline_mosquito_wings.coords.to_numpy().reshape(-1,100,2) # EFD efa = EllipticFourierAnalysis(n_components=20) coef = efa.transform(X) # PCA pca = PCA(n_components=3) pcscores = pca.fit_transform(coef) ```